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1.

iThis paper strives to provide a sound underpinning for the theory

of stochastic games. Section 2 is a reworking of the Bevley-Kohlberg

result integrated with Shapley's; the "black magic" of Tarski's principle

is replaced by the "gray magic" of the Hilbert Nullstellensatz. Section

3 explicates the underlying topology and measure theory; I believe it is

as necessary for Mertens and Neyman'sproof of the minmax theorem [81 as

it is for mine [9, 10]. Finally, Section 4 establishes a result on this

sort of structure which may be of some independent interest; in any case,

it is critical for the argument in [10].

This work was strongly influenced by Andrew Gleason. Other acknow-

ledgments may be found in [10].
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2.

Fix a stochastic game. In this section we study the r-discount

jLme, following 111] and 131.

Let S , the state set, A (resp. B ) the choice set each turn

for A (reap. B ), and C , with fixed measurable function q: [0,1] C

all be finite sets; let A : SxAxBxC - S and d:SxAxBxC - , 1]

give the state and the outcome resulting from choices (starting in state

s 6 S ) of a E A , b 6 B and random c 6 C . Without loss of generality,

these sets and functions describe the game completely. Consider now the

stochastic game, with fixed starting state s , and discount rate

r 6 (0,1) ; that is, let the payoff function be di (1-r)i- , where

di the payoff on the i th step.

As Idi(l-r)i-I is a continuous payoff function on a pair of

compact strategy spaces (see Section 3) the min-max theorem follows immed-

iately (this well-known result follows rapidly from [11]); let the value of the

game, for starting state s, be V s(r) . Following [3] and (11] we characterize

the values and optimal strategies, by considering the system of equations:

Us(r) = val(Exp(d(s,a,b,c))+(l-r)J P(s).U-i(r)) . (2.1s)
C seS

Here P(G) = measure({t 6 [0,1] : A(s,a,b,q(t)) = s)) depends upon a ,

b , and s ; val is just the ordinary min-max value of the matrix.

For fixed r , think of the system as one equation in a variable in

• Applying the Contraction Mapping Theorem (16], p. 229), it

must have a unique solution (U (r)) . Indeed, as the contraction con-

stant Ill-rl is bounded away from 1 on any interval [r*, 1] , and

indeed on a set x+yi E C : r* < x < 1, 0 < y c 6(r*)) , (iY(r)) is



3

a continuous function of r in (a neighborhood of) (0,1)

Proposition 2.2: For r S. (0,1) , this solution is precisely (V a (r))

Proof: It is clearly enough to show the following, for fixed r f- (0,I)

By playing as his it move an optimal strategy in

the game given by the matrix of (2.1 si-l ), Mr. A (2.3)

guarantees himself a payoff of at least aU (r)

(2.3) is clearly equivalent to:

J(r) > V Wr for all aaS(2.4)
0 0

So suppose (2.4) is false. Let a max(V (r) -iY (r)) ;choose s
S 0 0

so that the max is achieved.

Then

lt (r) -val(Exp(d(S",a,b,c)) +j_ (1-r) P (9) 4 (r))
C ses

--(l-r)ai + val(Exp(d(s,a,b,c)) + Tj (l-r)P(s) .(--(r) +ac))
C seS

a -(l-r)cs + val(Exp(d(s,a,b,c)) + _I (l-r)P(s).V-(r))
C sf.S

So ?1,(r) + ax > val(Exp(d(2s,a,b,c)) +J 8lrPsab,)V(

C sES

(2.5)

But since both sides of (2.5) equal 'V".(r) ,we have a contradiction.
8

It is well-known that the value of a matrix is one of a finite list

of rational functions of the coefficients (namely the value of some square
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submatrix; see [8 ], p. 76). Thus the system may be viewed as a set of

polynomial equations--identifying S as {1, ..., k) , where k - isi --

81(xl, ...,xk ) 0 , ..., gk(xl, ...,xk) - 0 , where the coefficients

lie in the algebraically closed field F . Now, if the ideal

k
(gl, ... , gk) --that is, { I higi : hte F , i - 1, ...,k) --equals the

im1 k
tit ideal (1), then some linear combination h hIg - 1 , hi F

k~ k

for i - 1, ..., k ; this is impossible because h ig i((Vs)) I h-. h 0

when viewed as functions of r

By the Hilbert Nullstellenstaz (weak form; see [2], p. 69), then,

the only other possibility is that {(xl, ...,xk) 6 F : g1 (x1, ...,lx')

-0, ...' gk(xl, ..., xk) - 0) is non-empty. On the other hand, we saw

above that the solution is unique in the much larger field of all functions

of r ; hence it is certainly unique in F , and precisely equal to

(Vs (r)) But an algebraic function which maps reals to reals must in-

deed lie in F' - the field of real algebraic functions C F . Finally,

observe that each V (r) equals, at each point, one nf a finite list of
5

algebraic functions; each pair of these can cross each other only finitely

often (for their difference is an algebraic function, which can only have

finitely many zeroes). Thus by the continuity of the Va(r) , there

exists an interval (0,r) on which the Vsa(r) are algebraic, for all

s9S

F' has a natural ordering: f > g if and only if there exists

an r such that f > g on the interval (0,r) . Consider the games

(2.1s) with the values V (r) substituted in place of the Us(r) ; then

these are ordinary two-person zero-sum games, with coefficients in F' ,

and hence have optimal strategies {f(a,s;r)) ; by construction, for

each a and a , f(a,s;r) belongs to F' . For each r , then, we
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have optimal stationary strategies, algebraic in r , for the r-discount

game. Finally, it is well known that algebraic functions have Puiseaux

(fractional power) series expansions-see [l]--and so we have checked

the

Theorem of Bewley and Kohlberg: The values of the r-discount game, and

the stationary optimal strategies, have Puiseaux expansions.

L..

11"
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3.

More generally, consider an infinite decision tree such that, at

each node, the choice set is finite. By possibly duplicating certain

branches, we may assume that, without loss of generality, there exist

finite sets ZI , i - 1, 2, ..., such that Z consists simply of the

first node, Z2  is the choice set at the first node, Z3  is the choice

set at the second node, no matter which node was chosen as the second

node, and so on. Let Q be the space of paths on the tree;

Q - Z xZ 2 X ... is compact by Tychonoff's theorem (9], p. 144).

Simultaneously fix probability distributions on the choice set

at each node. Then these distributions induce a sequence of functions

i: Z, x ... xZi - IR such that

Vi (Zl, z 2, ..., Zil z z1 ) = i-l(Zl, .. ,zi_ I )

for any fixed Zl i , for any i - 1, 2,....

The following is a special case of the Kolmogorov Extension

Theorem (15]).

Proposition 3.1: There exists a measure i on Q such that

)j({zl}X{z2 )x... x{zi}xZi+1 XZ+ 2 .. x Pi, ... , zi) , for all

Z1, ..., zi , for all i

Proof: Consider the ring generated by 7 - the collection of sets of

the form

{Zl}X... d~z) xZ xz i + x ..
(z e h l .Xi i Xdd i+l n

We clearly have a finitely additive set function v with the desired



7

properties; to check that U is a measure, we need only confirm that

for any descending tower Y1 -Y 2  Y3  
-  Y £ Z for all j

(I - * implies lim - 0 ([4], p. 39). But every element of
Jl JJ -0.

Z is both open and closed in the direct product topology; hence the same

is true of every member of the ring. Thus, by the compactness of Q ,

any tower descending to 0 has Y = * for all j sufficiently large;

hence 1rm V(Yj) 0 trivially. Finally, since Z is a base for the

direct product topology, the Caratheodory Extension Theorem extends

to the Borel field ([4], p. 54).

El

Denote by T a function which assigns to every node in N , the

set of nodes, a probability distribution on its choice set; denote the set

of all possible T by MU , the space of mixed strategies. Then every

- C M induces a probability measure V T on Q . Let P 6 M , the space

of pure strategies, be the set of all w C M such that, at every node,

w selects some alternative with probability one. Then there exists a

canonical mapping f P - Q , sending w 6 P into the path determined

by i . T also induces a probability measure e on P ,and we have

Partition N into two disjoint subsets NB U NC where NB will

be thought of as the set of decision nodes, and N as the set of chance

nodes. Then we can write M - M x MC , where an element rB(T C) of

N5 (MC) is an assignamnt to each node in NB(NC) a probability distribu-

tion on its choice set. Similarly P - P x PC

8(TBTC) then decomposes as a product measure:
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e( -e0T x e
(rB TC) T B T

Assume now that TC  is fixed. Letting di , i - 1, 2, ... be

a sequence of measurable functions on Q , bounded below, we have

Proposition 3.2:

inf lim inf fQ Idjld(TB, TC)

TBriMB N Q -1J '

inf lrm Inf f 1 d dp

Thus thinking of NB as the nodes controlled by the decision-maker and

N as those controlled by nature (with nature's "strategy" known in ad-
C

vance, the decision-maker "might as well" play pure strategy as a mixed

one. This is true even in- a slightly stronger sense:

Corollary 3.3: If there exists a mixed strategy such that the infinum

is achieved, then it is also achieved by a pure strategy.

Proof of Proposition 3.2: For any i , for any B '

fQ didu(TBTC- f pdi(f())d(TB, )( )

f (f d (f(IrB Ic))de (wC))deB (wB)
C

by Fubini's Theorem ([9], p. 233). Thus of course

fdkld) da(B, C) - Ildild TcdTB
B fpB CC B
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Observing that the support of e is a subset of P B on which

f(, wC ) -f) , for any vC PC , we see:

iEP B  N- P P IdetTC B

inf lim inf f J dd d

-BEPB N P C C "

But for any fixed TB B

urn inf dulde do
-i B C

> inf lim inff dO
WrBEPB : [C d]

by Fatou's Lemma ([9], p. 199); of course, the same inequality holds if

we replace the left-hand side by the inf . But, since P BC MB  the
TBeMB

reverse inequality also holds and so

inf lirn inf f _ I (~d doedo
TEMB N- BS CP P mlI CB

- inf lim inf f , and done.

WBEP B  CK 1 C E]

Proof of Corollary 3.3: For TB such that the infinum is achieved, the

set of w in the support of 0 such that limN inf d d' > I + 1 k
Ts BcN-aryC of s er 1e k

is clearly of measure zero, where I is the infinun, and k an arbitrary
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positive integer. So the set where

i. Inf d rI do 1~:
N- PC 1 1i J C

is indeed of measure zero. Since the support of e is of course of
T B

measure one, we are done.

Note 3.4: The results of this section remain valid if "finite" is replaced

by "compact."

Note 3.5: our "mixed strategies" may not be the most general the decision-

maker could adopt. However, strategies with more complicated forms of

mixing can be disposed of in the same fashion using the compact form of

Proposition 3.2 (see Note 3.4).
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4.

Let {Zi} , Q , {i}j , and v be as in the previous section.

Suppose each Z has a distinguished subset Z such that(Z 1  x ZxZ* )CZ x

"( " X ( x ... )O 0; in other words, once a

node in some Z• is reached, the path remains in the {Z*1 with prob-
ii

ability 1. For a given path z - (zl, z2, ...) , let

1({Zl}x... x{zi i xZ ix z +  ... *
{zl} .. x~i~l} Z x+ . . ) ifz_ 1  Z_

P(i;z) - X X{zi-lIXZix i+l

0 if zi  r Z*_

the probability (conditional on Zl, ... , zi_1 ) of entering Z i . Suppose

we wish to integrate a function over Q which vanishes outside

(Z*)c x (Z*)c x ... Then, intuitively, we can integrate a smaller func-

tion, on a new measure which is bigger on (Z )c x (Z2)c x... , to achieve

the same result. This can be helpful if we wish to estimate the integral

by estimating the (smaller) function directly.

More precisely, we prove this result in terms of truncated sequences;

it is applied in Section 5 of 110]. For any z = (z., z2 1 ... ) E Q

define the truncations z(k) - (zl, ... , zk) F Z1 X ... X Zk . Write also

Q(z,...,Zk) 1 zlxz 2'x ... x{zklxZk+l xZk+2 x CQ. Then

Proposition 4.1: There exists a probability measure U on Q such that,

for all k , for all fk : Zlx... x Zk IR such that

fk ZlX XZk-lX Z i  {0},

k
Sfk(z(k))du fk(z(k))* H (l-P,(i;z))du"
Q Q i=i

• |
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Proof: By Proposition 2.1, to specify U' we need only specify

(Q(z ... , z)) , for all zi, ..., zi , for all I , while checking

that

Ui(Q(Zl ... , zi 1) (4.2)

So we define P(Q(zl, ... , Zk)) inductively on k
k

P(Q) -1 . Fix z -(z] 1, ... )e Q

1 ,

V(Q(Zl)) - (4.3)

0 if zI eZ

unless P,(l;z) = 1. In that case,

)j(Q(Zl)) P (Q(Zl))•

More generally, suppose we have specified IA(Q(zl, ..., Zil)) If this
equals 0, we let i(Q(z1, ... , Zi1 , zi)) 0 . If not, then also

P(Q(zI , ... , Zil)) ,' 0 , and we let

1 U(Q(zl ... I zt-1))

1- Pi(ifZ)j(Q(zl, Zi-l)) 1(Q(zlV ... zi))
1j (Q(ZlV ' z i ) )  if z t Z*

0 if z i aZi

unless, again, P,(i;z) 1 1 , in which case we let i(Q(zl1, ... , Zi))

U u(Q(Zl, ...,- Zi))•

Now



13

1 i(Q(z ' ', zi-1)) i-z* ,i(Q(z ' "' " z 1 ' z- ))1 P ,U ; Z) ' ( z , . ,Zi- l)) zi Z i j Q z V z - 1 Z )

But )j(Q(z, ... Zi~, )  (I- P*(i;z))v(Q(zl, ..., 9Zi)

by the definition of P*(i;z) , and so (4.2) is checked, and we have

defined a measure Ui

It remains to show that

k
f fk(Z(k))dp f fk(z(k)), T (1-P*(i;z))d.
Q Q -

We start by observing that

f I fQ Zlx...Xzk  Q(zl×x... xzk )

k

But on Q(zI X . xzk) f k is just a constant, as is 11 (1-P*(i;z))
i-l

and hence we are asking whether If(z1, ..., zk) - (Q(zl, ... , zk))

k
= If(z,. ..... , Zk)) . This of course follows

i=1

if

k
v(Q(zl, ...,I Zk)) 1 (l (- P(i;z))IA(zis .. ,zk)) (4)

ibi

whenever fk(zl, ..., zk) # 0 -i.e., whenever zk .

When k - 1 , (4.4) is immediate by (4.3). So assume proved for

k-i, and check for k. Then, for any z1 $ Z* , we define P on
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1

induction to get

k

i-1

-(1 -P*(1;z))Ij(Q(zi, .. ,Z k)) - P(Q(z 1, *,Z k))I

and we are done.
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